Grouping-Shuffling Particle Swarm Optimization: An Improved PSO for Continuous Optimization
نویسندگان
چکیده
This paper proposes a novel population-based evolution algorithm named grouping-shuffling particle swarm optimization (GSPSO) by hybridizing particle swarm optimization (PSO) and shuffled frog leaping algorithm (SFLA) for continuous optimization problems. In the proposed algorithm, each particle automatically and periodically executes grouping and shuffling operations in its flight learning evolutionary process. By testing on 4 benchmark functions, the numerical results demonstrate that, the optimization performance of the proposed GSPSO is much better than PSO and SFLA. The GSPSO can both avoid the PSO’s shortage that easy to get rid of the local optimal solution and has faster convergence speed and higher convergence precision than the PSO and SFLA.
منابع مشابه
Data Pre-processing for a Neural Network Trained by an Improved Particle Swarm Optimization Algorithm
This paper proposes an improved version of particle swarm optimization (PSO) algorithm for the training of a neural network (NN). An architecture for the NN trained by PSO (standard PSO, improved PSO) is also introduced. This architecture has a data preprocessing mechanism which consists of a normalization module and a data-shuffling module. Experimental results showed that the NN trained by im...
متن کاملAn improved particle swarm optimization with a new swap operator for team formation problem
Formation of effective teams of experts has played a crucial role in successful projects especially in social networks. In this paper, a new particle swarm optimization (PSO) algorithm is proposed for solving a team formation optimization problem by minimizing the communication cost among experts. The proposed algorithm is called by improved particle optimization with new swap operator (IPSONSO...
متن کاملA Particle Swarm Optimization Algorithm for Mixed-Variable Nonlinear Problems
Many engineering design problems involve a combination of both continuous anddiscrete variables. However, the number of studies scarcely exceeds a few on mixed-variableproblems. In this research Particle Swarm Optimization (PSO) algorithm is employed to solve mixedvariablenonlinear problems. PSO is an efficient method of dealing with nonlinear and non-convexoptimization problems. In this paper,...
متن کاملAn Improved Particle Swarm Optimization for a Class of Capacitated Vehicle Routing Problems
Vehicle Routing Problem (VRP) is addressed to a class of problems for determining a set of vehicle routes, in which each vehicle departs from a given depot, serves a given set of customers, and returns back to the same depot. On the other hand, simultaneous delivery and pickup problems have drawn much attention in the past few years due to its high usage in real world cases. This study, therefo...
متن کاملDesigning an adaptive fuzzy control for robot manipulators using PSO
This paper presents designing an optimal adaptive controller for tracking control of robot manipulators based on particle swarm optimization (PSO) algorithm. PSO algorithm has been employed to optimize parameters of the controller and hence to minimize the integral square of errors (ISE) as a performance criteria. In this paper, an improved PSO using logic is proposed to increase the convergenc...
متن کامل